Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[Butane-1,4-diylbis(nitrilodiethylidene)]tetraacetonitrile

Reinout Meijboom

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa

Correspondence e-mail: meijboomr.sci@mail.ufs.ac.za

Received 1 November 2007; accepted 12 November 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.037; wR factor = 0.092; data-to-parameter ratio = 20.3.

In the centrosymmetric title compound, $C_{16}H_{24}N_6$, close intermolecular C-H···N interactions are observed. All bond distances and angles are unremarkable.

Related literature

For related literature on dendrimers, see: Meijboom *et al.* (2003); Meijboom, Hutton & Moss (2004); Meijboom, Moss *et al.* (2004); Harder *et al.* (2004); Overett *et al.* (2005); Blom *et al.* (2005). For the synthesis of the current dendritic starting material, see: De Brabander-van den Berg & Meijer (1994).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{24}N_6\\ M_r=300.41\\ Monoclinic, P2_1/c\\ a=5.1149 \ (1) \ \AA\\ b=11.4001 \ (3) \ \AA\\ c=14.4864 \ (4) \ \AA\\ \beta=98.970 \ (1)^\circ \end{array}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{min} = 0.982, T_{max} = 0.989$ $V = 834.38 \text{ (4) } \text{\AA}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 100 (2) K $0.24 \times 0.17 \times 0.15 \text{ mm}$

8480 measured reflections 2034 independent reflections 1753 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 100 pa

 $wR(F^2) = 0.092$ H-ator

 S = 1.05 $\Delta \rho_{min}$

 2034 reflections
 $\Delta \rho_{min}$

 $\begin{array}{l} 100 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{\text{max}} = 0.30 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{\text{min}} = -0.18 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	<i>D</i> -Н	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
	$C4 - H4A \cdots N2^{i}$ $C7 - H7B \cdots N3^{i}$	0.99 0.99	2.47 2.57	3.4546 (13) 3.5561 (14)	170 175

Symmetry code: (i) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT-Plus* (Bruker, 2004); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Financial assistance from the South African National Research Foundation, the Research Fund of the University of the Free State and SASOL is gratefully acknowledged. Part of this material is based on work supported by the South African National Research Foundation (SA NRF, GUN 2038915). Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2046).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Blom, B., Overett, M. J., Meijboom, R. & Moss, J. R. (2005). *Inorg. Chim. Acta*, **358**, 3491–3496.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Release 3.0c. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SADABS (Version 2004/1) and SAINT-Plus (Version 7.12 including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.
- De Brabander-van den Berg, E. M. M. & Meijer, E. W. (1994). Angew. Chem. Int. Ed. Engl. **32**, 1308–1311.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harder, S., Meijboom, R. & Moss, J. R. (2004). J. Organomet. Chem. 689, 1095– 1101.
- Meijboom, R., Hutton, A. T. & Moss, J. R. (2003). Organometallics, 22, 1811– 1815.
- Meijboom, R., Hutton, A. T. & Moss, J. R. (2004). J. Organomet. Chem. 689, 987–991.
- Meijboom, R., Moss, J. R., Hutton, A. T., Makaluza, T.-A., Mapolie, S. F., Waggie, F. & Domingo, M. R. (2004). J. Organomet. Chem. 689, 1876–1881.
 Overett, M. J., Meijboom, R. & Moss, J. R. (2005). Dalton Trans. pp. 551–555.
 Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4793 [doi:10.1107/81600536807058266]

[Butane-1,4-diylbis(nitrilodiethylidene)]tetraacetonitrile

R. Meijboom

Comment

Dendrimers are a unique class of synthetic polymers in which growth eminates from a central core molecule. In the divergent synthesis method, polymer growth emanates in an outward direction from the initiator core by a series of stepwise polymerization reactions that attach layers to form the final tree-like structure.

From our interest in organometallic dendrimers (Meijboom *et al.*, 2003; Meijboom, Hutton & Moss, 2004; Harder *et al.*, 2004; Meijboom, Moss *et al.*, 2004; Overett *et al.*, 2005; Blom *et al.*, 2005), we decided to synthesize the well known poly-propylene amine dendrimers (De Brabander-van den Berg & Meijer; 1994).

Simple Michael addition of acrylonitrile to the primary amine groups of butylenediamine afforded compound (I) in quantitative yield.

Experimental

The compound was synthesized according to previously reported procedures. The analytical data was identical to those previously reported (De Brabander-van den Berg & Meijer; 1994).

Refinement

H atoms were positioned geometrically and refined using a riding model, with fixed C—H distances of 0.99 Å [$U_{iso}(H) = 1.2 U_{eq}$]. The highest residual peak is 0.30 e located 0.76 Å from atom C1 and the deepest hole -0.18 e, 0.62 Å from C4. A minor disorder on C4 and C6 afforded a Hirshfield warning. Refining the structure disordered gave a disorder on C4 of 99.3/0.7% and a disorder on C6 of 99.4/0.6%. It was decided that the disorder was too small to be significant and the molecule was refined without these disorders.

Figures

Fig. 1. The structure (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. Primed atoms were generated by symmetry.

[Butane-1,4-diylbis(nitrilodiethylidene)]tetraacetonitrile

 $F_{000} = 324$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.9 - 28.1^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 100 (2) K

Cuboid, colourless

 $0.24\times0.17\times0.15~mm$

 $D_{\rm x} = 1.196 {\rm Mg m}^{-3}$ Mo Ka radiation

Cell parameters from 2763 reflections

Crystal data

C16H24N6 $M_r = 300.41$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc *a* = 5.1149 (1) Å *b* = 11.4001 (3) Å c = 14.4864 (4) Å $\beta = 98.970 (1)^{\circ}$ $V = 834.38 (4) \text{ Å}^3$ Z = 2

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer	2034 independent reflections
Monochromator: graphite	1753 reflections with $I > 2\sigma(I)$
Detector resolution: 8.6 pixels mm ⁻¹	$R_{\rm int} = 0.031$
T = 100 K	$\theta_{\text{max}} = 28.3^{\circ}$
φ scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2004)	$h = -6 \rightarrow 4$
$T_{\min} = 0.982, \ T_{\max} = 0.989$	$k = -14 \rightarrow 14$
8480 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0368P)^2 + 0.2519P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.037$	$(\Delta/\sigma)_{\rm max} = 0.002$
$wR(F^2) = 0.092$	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.05	$\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$
2034 reflections 100 parameters	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.53485 (18)	0.46941 (9)	0.45673 (6)	0.0140 (2)
H1A	0.7011	0.4245	0.4738	0.017*
H1B	0.5641	0.5289	0.4096	0.017*
C2	0.31330 (18)	0.38621 (9)	0.41476 (7)	0.0137 (2)
H2A	0.2869	0.328	0.4632	0.016*
H2B	0.1479	0.4324	0.4006	0.016*
C3	0.59406 (19)	0.25324 (9)	0.33950 (7)	0.0152 (2)
H3A	0.7476	0.3071	0.3505	0.018*
H3B	0.6016	0.2108	0.2804	0.018*
C4	0.61514 (19)	0.16494 (9)	0.41946 (7)	0.0168 (2)
H4A	0.7768	0.1171	0.4199	0.02*
H4B	0.6321	0.2077	0.4796	0.02*
C5	0.38407 (19)	0.08709 (9)	0.41123 (7)	0.0163 (2)
C6	0.3261 (2)	0.39962 (9)	0.24859 (7)	0.0170 (2)
H6A	0.4889	0.4474	0.252	0.02*
H6B	0.1756	0.4538	0.2502	0.02*
C7	0.2825 (2)	0.33178 (9)	0.15604 (7)	0.0174 (2)
H7A	0.2466	0.3881	0.1036	0.021*
H7B	0.4463	0.2885	0.1493	0.021*
C8	0.06207 (19)	0.24867 (9)	0.15039 (7)	0.0168 (2)
N1	0.35032 (15)	0.32200 (7)	0.32974 (5)	0.01323 (19)
N2	0.20659 (18)	0.02511 (8)	0.40503 (6)	0.0219 (2)
N3	-0.11103 (19)	0.18428 (9)	0.14412 (6)	0.0253 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0134 (4)	0.0145 (5)	0.0138 (5)	-0.0001 (4)	0.0015 (3)	-0.0019 (4)
C2	0.0137 (4)	0.0140 (5)	0.0136 (4)	-0.0002 (4)	0.0026 (3)	-0.0017 (3)
C3	0.0145 (4)	0.0156 (5)	0.0160 (5)	-0.0007 (4)	0.0038 (3)	-0.0013 (4)
C4	0.0150 (4)	0.0174 (5)	0.0173 (5)	0.0017 (4)	0.0000 (3)	-0.0004 (4)
C5	0.0189 (5)	0.0158 (5)	0.0142 (5)	0.0049 (4)	0.0025 (3)	0.0017 (4)
C6	0.0216 (5)	0.0148 (5)	0.0138 (5)	-0.0032 (4)	0.0002 (4)	0.0012 (4)
C7	0.0182 (5)	0.0207 (6)	0.0129 (5)	-0.0019 (4)	0.0018 (3)	0.0012 (4)
C8	0.0188 (5)	0.0190 (6)	0.0123 (4)	0.0032 (4)	0.0014 (3)	-0.0026 (4)
N1	0.0150 (4)	0.0131 (4)	0.0112 (4)	0.0002 (3)	0.0011 (3)	-0.0010 (3)
N2	0.0208 (4)	0.0199 (5)	0.0249 (5)	0.0008 (4)	0.0034 (3)	0.0031 (4)
N3	0.0254 (5)	0.0281 (6)	0.0222 (5)	-0.0059(4)	0.0032 (4)	-0.0078 (4)

Geometric parameters (Å, °)

C1—C1 ⁱ	1.5246 (18)	C4—H4A	0.99
C1—C2	1.5292 (13)	C4—H4B	0.99
C1—H1A	0.99	C5—N2	1.1428 (14)

supplementary materials

C1—H1B	0.99		C6—N1		1.4611 (12)
C2—N1	1.4702 (12)		C6—C7		1.5336 (14)
C2—H2A	0.99		С6—Н6А		0.99
C2—H2B	0.99		С6—Н6В		0.99
C3—N1	1.4607 (12)		С7—С8		1.4654 (14)
C3—C4	1.5257 (14)		С7—Н7А		0.99
С3—НЗА	0.99		С7—Н7В		0.99
С3—Н3В	0.99		C8—N3		1.1427 (14)
C4—C5	1.4680 (14)				
C1 ⁱ —C1—C2	110.91 (9)		С5—С4—Н4В		109.2
C1 ⁱ —C1—H1A	109.5		С3—С4—Н4В		109.2
C2—C1—H1A	109.5		Н4А—С4—Н4В		107.9
C1 ⁱ —C1—H1B	109.5		N2—C5—C4		179.01 (11)
C2—C1—H1B	109.5		N1-C6-C7		112.36 (8)
H1A—C1—H1B	108		N1—C6—H6A		109.1
N1—C2—C1	117.23 (8)		С7—С6—Н6А		109.1
N1—C2—H2A	108		N1—C6—H6B		109.1
С1—С2—Н2А	108		С7—С6—Н6В		109.1
N1—C2—H2B	108		H6A—C6—H6B		107.9
C1—C2—H2B	108		С8—С7—С6		112.36 (8)
H2A—C2—H2B	107.2		С8—С7—Н7А		109.1
N1—C3—C4	112.69 (8)		С6—С7—Н7А		109.1
N1—C3—H3A	109.1		С8—С7—Н7В		109.1
С4—С3—Н3А	109.1		С6—С7—Н7В		109.1
N1—C3—H3B	109.1		H7A—C7—H7B		107.9
C4—C3—H3B	109.1		N3—C8—C7		178.64 (11)
НЗА—СЗ—НЗВ	107.8		C3—N1—C6		111.53 (8)
C5—C4—C3	112.12 (8)		C3—N1—C2		113.92 (7)
C5—C4—H4A	109.2		C6—N1—C2		111.51 (8)
C3—C4—H4A	109.2				
C1 ⁱ —C1—C2—N1	179.07 (10)		C7—C6—N1—C3		68.15 (10)
N1—C3—C4—C5	54.79 (11)		C7-C6-N1-C2		-163.24 (8)
N1—C6—C7—C8	52.27 (11)		C1—C2—N1—C3		55.57 (11)
C4—C3—N1—C6	-175.81 (8)		C1-C2-N1-C6		-71.76 (10)
C4—C3—N1—C2	56.87 (11)				
Symmetry codes: (i) $-x+1, -y+1, -z+1$.					
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C4—H4A…N2 ⁱⁱ		0.99	2.47	3.4546 (13)	170
C7—H7B···N3 ⁱⁱ		0.99	2.57	3.5561 (14)	175
Symmetry codes: (ii) $x+1$, y , z .					

